Exercise 10a : Calculus with Parametric Curves

In Exercise (1)-(4), find an equation of the tangent line to the curve at the given point.

(1) \(x = t^4 + 1, \ y = t^3 + t; \ t = -1 \)
(2) \(x = e^{\sqrt{t}}, \ y = t - \ln t^2; \ t = 1 \)
(3) \(x = 2\sin 2t, \ y = 2\sin t; \quad (\sqrt{3}, 1) \)
(4) \(x = \sin t, \ y = \sin(t + \sin t); \quad (0, 0) \)

In Exercise (5)-(8), find \(\frac{dy}{dx} \) and \(\frac{d^2y}{dx^2} \). For which values of \(t \) is the curve concave upward?

(5) \(x = 4 + t^2, \ y = t^2 + t^3 \)
(6) \(x = t - e^t, \ y = t + e^{-t} \)
(7) \(x = 2\sin t, \ y = 3\cos t, \ 0 < t < 2\pi \)
(8) \(x = \cos 2t, \ y = \cos t, \ 0 < t < \pi \)

(9) Let \(P \) be a point at a distance \(d \) from the center of a circle of radius \(r \). The curve traced out by \(P \) as the circle rolls along a straight line is called a **trochoid**.

(a) Using the same parameter \(\theta \) as for the cycloid and assuming the line is the \(x \)-axis and \(\theta = 0 \) when \(P \) is at one of its lowest points, i.e. \((0, r - d)\), show that parametric equations of the trochoid are

\[
\begin{align*}
x &= r\theta - d\sin \theta \\
y &= r - d\cos \theta.
\end{align*}
\]

(b) Find the slope of the tangent line to the trochoid in terms of \(\theta \).

(c) Show that if \(d < r \), then the trochoid does not have a vertical tangent.

(10) At what points on the curve

\[
\begin{align*}
x &= t^3 + 4t \\
y &= 6t^2
\end{align*}
\]

is the tangent parallel to the line with equations \(x = -7t, \ y = 12t - 5 \)?
(11) Find equations of the tangents to the curve

\[x = 3t^2 + 1 \quad y = 2t^3 + 1 \]

that pass through the point (4,3).

In Exercise (12)-(15), find the length of the given curve.

(12) \[x = 1 + 3t^2, \quad y = 4 + 2t^3, \quad 0 \leq t \leq 1 \]

(13) \[x = \frac{t}{1+t}, \quad y = \ln(1+t), \quad 0 \leq t \leq 2 \]

(14) \[x = e^t \cos t, \quad y = e^t \sin t, \quad 0 \leq t \leq \pi \]

(15) \[x = e^t - t, \quad y = 4e^{t/2}, \quad -8 \leq t \leq 3 \]

In Exercise (16)-(19), find the area of the surface obtained by rotating the given curve about the specified line.

(16) \[x = t^3, \quad y = t^2, \quad 0 \leq t \leq 1, \quad \text{about the } x\text{-axis} \]

(17) \[x = a \cos^3 \theta, \quad y = a \sin^3 \theta, \quad 0 \leq \theta \leq \frac{\pi}{2}, \quad \text{about the } x\text{-axis} \]

(18) \[x = 3t^2, \quad y = 2t^3, \quad 0 \leq t \leq 5, \quad \text{about the } y\text{-axis} \]

(19) \[x = e^t - t, \quad y = 4e^{t/2}, \quad 0 \leq t \leq 1, \quad \text{about the } y\text{-axis} \]